反比例教案(1)
新课改要求变传统的接受式学习方式为新型的探究式学习方式,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来,使学习过程更多地成为学生发现问题、解决问题、探索研究、创新求异的过程。在设计《反比例的意义》时,我考虑到此前学生学习了正比例的意义,对“什么是相关联的量”、“成正比例的两个量的特征”已经有了很好的认识,因此我灵活使用教材,对教学内容进行创造性的加工和处理,努力克服教材的局限性,最大限度地为学生拓宽探究学习的空间,提高学生的学习兴趣。
让学生猜测什么是反比例时,有的成正比例,还有可能成什么量时,有的学生说,只要这两种两关联的量的比值不一定,就成反比例,有的学生说,那不对,应该是积一定,才成反比例。学生在这个过程中,经历了猜想、思考、辩论,课堂气氛很好。
学生有了学习正比例的基础,今天学习反比例,非常轻松。
反比例教案(2)
教学内容:
教材第106、107页例1,例2。
教学要求:
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
教学重点:
认识正、反比例应用题的特点。
教学难点:
掌握用比例知识解答应用题的解题思路。
教学过程:
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?
(2)说明:这道题还可以用比例知识解答。
提问:题里再买几个同样的篮球说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次篮球个数与总价对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:效率时间=总量)这道题里哪个数量是不变的量?
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)
三、巩固练习
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业
完成练习十三第2~6题的解答。
反比例教案(3)
教学目标
1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.
2.使学生能正确判断正、反比例.
教学重点
正、反比例的联系和区别.
教学难点
能正确判断正、反比例.
教学过程()
一、复习准备
判断下面每题中两种量成正比例还是成反比例.
1.单价一定,数量和总价.
2.路程一定,速度和时间.
3.正方形的边长和它的面积.
4.时间一定,工效和工作总量.
二、新授教学
(一)出示课题
教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.
(二)教学例7(课件演示:正反比例的比较)
例7.观察下面的两个表,根据表分别填空.
表1
路程(千米)
5
10
25
50
100
时间(时)
1
2
5
10
20
在表1中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和路程成( )关系.
表2
速度(千米/时)
100
50
20
10
5
时间(时)
1
2
5
10
20
在表2中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和速度成( )关系.
1.分组讨论、交流.
2.引导学生讨论回答
(1)从表1中,怎样知道速度是一定的?根据什么判断速度和时间成正比例?
(2)从表2中,怎样知道路程是一定的?根据什么判断速度和时间成反比例?
3.引导学生总结路程、速度、时间三个量中每两个量之间的关系.
速度×时间=路程
4.练习:判断下面两个量成什么比例.
(1)当速度一定时,路程和时间.
(2)当路程一定时,速度和时间.
(3)当时间一定时,路程和速度.
(三)比较正比例和反比例的关系.(继续演示课件:正反比例的比较)
讨论填表:正、反比例异同点
相同点:都有两种相关联的量,一种量随着另一种量变化.
不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.
三、课堂小结
今天我们学习了哪些知识?你还有什么问题吗?
四、巩固练习
(一)判断单价、数量和总价中一种量一定,另外两种量成什么比例.为什么?
1.单价一定,数量和总价成( ).
2.总价一定,单价和数量成( ).
3.数量一定,总价和单价成( ).
(二)从汽车每次运货吨数、运货的次数和运货的总吨数这三种量中,你能找出哪几种比例关系?
五、课后作业
一个单位食堂每天用大米的数量、用的天数和大米的总量如下表.
表1
在表1中,相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,大米的总量和用的天数成( )关系.
表2
在表2中,相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,每天用的数量和用的天数成( )关系.
六、板书设计
正比例和反比例的比较
相同点
1.都有两种相关联的量.
2.一种量随着另一种量变化.
不同点
1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.
2.相对应的每两个数的比值(商)是一定的.
1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).
2.相对应的每两个数的积是一定的.
探究活动
灵活判断
活动目的
1.理解正反比例的意义.
2.能根据正反比例的意义,正确判断两种量是否成比例,成什么比例.
活动过程
1.教师出示思考题目:
(1)正方形的边长和面积是否成比例?
(2)圆的面积和半径是否成比例?
2.学生分小组讨论.
3.学生分小组汇报讨论结果.
4.师生共同小结并总结规律.
反比例教案(4)
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:
感受反比例的变化,概括反比例的意义;
教学难点:
正确判断两种相关联的量是否成反比例;
教学准备:
20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)
每次拿的支数
10、5、4、2、1
拿的次数
总支数
教学过程:
一、复习
1、什么叫做“成正比例的量”?
2、判断两种量是否成正比例关键是什么?
3、练习:课本表中的两种量是不是成正比例?为什么?
二、小组协作概括“成反比例的量”的意义
(一)活动一
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)
6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)
1、课件出示例3,指名读题,学生独立完成
2、总结归纳出正比例和反比例的相同点和不同点
三、强化练习发展提高
1、判定两个量是否成反比例,主要看它们的()是否一定。
2、全班人数一定,每组的人数和组数。
()和()是相关联的量。
每组的人数×组数=全班人数(一定)
所以()和()是成反比例的量。
3、判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4、机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
反比例教案(5)
教学内容:
教材第56页复习第4~l0题。
教学要求:
1、使学生加深认识正比例关系和反比例关系的意义,进一步掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
2、使学生进一步掌握正、反比例应用题的解题思路和解题方法,提高解答正、反比例应用题的能力。
教学重点:
加深认识正比例关系和反比例关系的意义。
教学难点:
提高解答正、反比例应用题的能力。
教学过程:
一、揭示课题
在“比例”这一单元里,除了认识了比例的意义和性质外,还学习了成正、反比例量的有关知识。这节课,我们复习正、反比例。(板书课题)通过复习,一要加深对成正比例关系和成反比例关系量的认识,提高两种相关联量成正比例还是反比例关系的判断能力;二要进一步认识正、反比例的应用题,加深理解正、反比例应用题的解题思路和方法,提高用比例知识解答应用题的能力。
二、复习正、反比例的意义
1、做复习第4题。
让学生看第4题,思考各成什么比例。指名学生口答,说明理由。
2、整理正、反比例的意义。
提问:刚才是根据正、反比例的意义判断的。现在,谁来说一说正、反比例的意义各是什么?
根据正比例和反比例的意义,正比例和反比例有什么相同和不同的地方?(板书正比例和反比例的相同点和不同点)判断正、反比例的关键是什么?
3、做复习第5题。
小黑板出示,指名学生口答,并说明理由。说明:根据实际问题里相关联量所成的正比例或反比例关系,可以用比例知识解答相应的应用题。
三、复习正、反比例应用题
1、整理解题思路。
(1)做复习第6题。
让学生读题,思考各成什么比例的应用题。指名学生说明各是什么应用题,为什么。指名两人板演,其余学生做在练习本上。集体订正,让学生说明根据什么列式的。
(2)提问:解答正、反比例应用题要怎样想?在解题方法上有什么不同的地方?
2、综合练习。
(1)做复习第8题。
让学生读题。提问:“药粉和水的比是1:500”你是怎样想的?(引导学生看出药粉和水的份数以及1:500表示比值一定等)这两道题成什么比例,为什么?让学生做在练习本上。指名学生口答等式,老师板书。再让学生说说怎样想的,根据什么列式的。追问:这道题还可以怎样做?(让学生思考按比的意义,应用分数知识或归一方法,口答算式)
(2)做复习第l0题。
要求学生思考有哪些方法解答第一个问题,指名一人板演,其余学生做在练习本上。要求列出不同解法的式子。集体订正,说说各是怎样想的。
四、课堂小结
这节课复习了哪些内容?谁来说一说这节课你掌握了哪些知识或方法?
五、课堂作业
复习第7、9题,第10题第二个问题。
反比例教案(6)
从容说课
我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了
用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想
此外,解决实际问题时.还要引导学生体会知识之间的联系以及知识的综合运用
教学目标
(一)教学知识点
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程
2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用
教学重点
用反比例函数的知识解决实际问题
教学难点
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题
教学方法
教师引导学生探索法
教学过程
Ⅰ.创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用
[师]很好;学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学
Ⅱ. 新课讲解
某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?
(2)当木板画积为 0.2 m2时.压强是多少?
(3)如果要求压强不超过6000 Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数图象
(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流
[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题
请大家互相交流后回答
[生](1)由p=得p=
p是S的反比例函数,因为给定一个S的值对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数
(2)当S= 0.2 m2时, p==3000(Pa)
当木板面积为 0.2m2时,压强是3000Pa
(3)当p=6000 Pa时,
S==0.1(m2)
如果要求压强不超过6000 Pa,木板面积至少要 0.1 m2
(4)图象如下:
(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围
[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?
[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在
[师]很好,那么在(1)中是不是应该有条件限制呢?
[生]是,应为p= (S>0)
做一做
1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
[师]从图形上来看,I和R之间可能是反比例函数关系.电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.
[生]解:(1)由题意设函数表达式为I=
∵A(9,4)在图象上,
∴U=IR=36
∴表达式为I=
蓄电池的电压是36伏
(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6
电源不超过 10 A,即I最大为 10 A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内
2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流
[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的
坐标即求y=k1x与y=的交点
[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上
∴k1=2,2=
∴k1=2,k2=6
∴表达式分别为y=2x,y=
∴x2=3
∴x=±
当x= ?时,y= ?2
∴B(?,?2)
Ⅲ.课堂练习
1.某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系式;
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?
解:(1)8×6=48(m3)
所以蓄水池的容积是 48 m3
(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少.
(3)t与Q之间的关系式为t=
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=9.6(m3)
(5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空.
Ⅳ、课时小结
节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.
Ⅴ课后作业
习题5.4.
板书设计
§ 5.3反比例函数的应用
一、1.例题讲解
2.做一做
二、课堂练习
三、课时小节
四、课后作业(习题5.4)
反比例教案(7)
[设计意图]通过多种形式的练习,加强了学生对用数据说明成反比例的量和反比例关系的学习。使不同层次的学生从中体会到成功的快乐。
一、导入:
同学们,通过上节课的学习,我们已经学会了两个成反比例的量和它们的关系,今天我们一起来回顾复习一下成正比例的量和成反比例的量。
二、练习:
1、 判断
(1)一个因数不变,积与另一个因数成正比例。( )
(2)长方形的长一定,宽和面积成正比例。( )
(3)大米的总量一定,吃掉的和剩下的成反比例。( )
(4)圆的半径和周长成正比例。( )
(5)分数的分子一定,分数值和分母成反比例。( )
(6)铺地面积一定,方砖的边长和所需块数成反比例。( )
(7)铺地面积一定,方砖面积和所需块数成反比例。( )
(8)除数一定,被除数和商成正比例。( )
2、选择
(1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量( )
A、成正比例 B、成反比例 C、不成比例
(2)和一定,加数和另一个加数( )
A、成正比例 B、成反比例 C、不成比例
(3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( )
A、汽车每次运货吨数一定,运货次数和运货总吨数
B、汽车运货次数一定,每次运货的吨数和运货总吨数
C、汽车运货总吨数一定,每次运货的吨数和运货的次数
3、判断题:自主练习第3题
学生判断各题中的两个量是不是成反比例。并说说理由。
重点引导学生运用反比例的意义进行判断。
4、印刷厂用6000张纸装订练习本。
每本的页数
(1)先填写上表。
(2)思考每本的页数与装订的本数有什么关系?
6、自主练习第2题
这是一道用抽象形式巩固反比例意义的题目。学生先思考,根据X和成反比例,确定X和的乘积一定,再根据第一组数据找到X和的乘积,然后利用这个乘积和每组中的已知数据,求出另一数据。
三、你知道吗?(47页相关知识)
介绍反比例图像,学生了解反比例关系也能用图像表示。由于理解难度较大,只作了解,不做学习要求。
教学反思:
本节课课堂练习。课上要重视学生掌握的情况,正确判断的同时,还要说理清楚。学生对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?判断时会较为困难,说理也不是很清楚。所以教师在补充这些练习时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后再进行相关形式的练习,我想对学生的后继学习必然有所帮助。
四、课堂小结:
这节课我们研究了什么问题?你有什么收获?
(引导学生进行总结,能用自己的话说出学习主要内容。)
教学反思:
本节课首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。然后启发学生主动、自觉地去观察、分析、概括、发现规律。通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,有效地培养了总结、区别、沟通的能力。再加以练习的及时,使学生加深概念的理解。
反比例教案(8)
教学内容:
教科书第22—24页反比例的意义,练习六的第4—6题。
教学目的:
1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。
2.使学生进一步认识事物之间的相互联系和发展变化规律。
3.初步渗透函数思想。
教具准备:
投影仪、投影片、小黑板。
教学过程:
一、复习
1.让学生说说什么是成正比例的量:
2.用投影片出示下面的题:
(1)下面各题中哪两种量成正比例?为什么?
①笔记本单价一定,数量和总价:
⑨汽车行驶速度一定.行驶的路程和时间。
②工作效率一定.’工作时间和工作总量。
①一袋大米的重量一定.吃了的和剩下的。
(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?
二、导入新课
教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。
三、新课
1.教学例4。
出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。
让学生观察这个表,然后每四人一组讨论下面的问题:
(1)表中有哪两种量?
(2)所需的加工时间怎样随着每小时加工的个数变化?
(3)每两个相对应的数的乘积各是多少?
学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数
“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)
“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”
学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。
2.教学例5。
用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。
(1)理解题意,填写装订本数。
“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)
“这40本是怎么计算出来的?”(用600÷15)
“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。
(2)观察分析表中两种量的变化规律。
让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)
“装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数
15 40
20 30
25 24
四、巩固练习
1.做教科书第28页“做一做”中的题目。
让学生自己填,并说一说为什么。
2.做练习七的第1—2题。
教师巡视,个别辅导,最后订正。
五、小结
教师:请同学们说说正比例和反比例关系有什么相同点和不同点?
反比例教案(9)
教学内容:教材第99~102页例1~例3。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:认识反比例关系的意义。
教学难点:掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关
系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例2。
出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050
所需的天数
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例1
出示例1。
请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例3。
出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做练一练。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做练习十二第1题。
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习十二第2~4题。
反比例教案(10)
教学内容
根据教科书自选内容。
教学目标
1、通过练习,使学生进一步理解并掌握反比例的意义,会正确判断两种相关联的量是否成反比例,并能解决简单的实际问题。
2、进一步培养学生分析问题、解决问题的能力。
3、结合实例,培养学生仔细分析、主动探索的良好的学习习惯。
教学重点
正确理解反比例的意义,并能作出正确的判断。
教学难点
能根据反比例的意义,解决相关的实际问题。
教学过程
一、学习准备,揭示课题
1、谈话引入
上节课我们学了什么?今天,我们进行练习(板书:反比例练习)。通过练习,达到以下两个目标:①进一步理解反比例的意义,并能正确判断两个相关联的量是否成反比例;②能根据反比例的意义,解决实际问题。
2、你知道哪些有关反比例的知识
板书:意义、字母表示:xy=k(一定)
二、基本练习
1.观察下面三个表
(1)表1中的两种量是怎样变化的?哪种量是一定的?每天烧煤量和烧的天数成什么比例?为什么?
(2)表2中的两种量是怎样变化的?哪种量是一定的?用去的煤和剩下煤的吨数成比例吗?为什么?
(3)表3中的两种量是怎样变化的?哪种量是一定的?平行四边形的底和平行四边形的高成什么比例?为什么?
2、判断
判断下面各题中的两种量是否成比例。如果成比例,成什么比例?
(1)平行四边形的面积一定,它的底和高。
(2)一筐桃平均分给猴子,猴子的只数和每只猴子分的个数。
(3)报纸的单价一定,订阅的份数与总价。
(4)小刚跳高的高度和他的身高。
(5)C=4a
三、解决问题
1、巩固练习
一辆汽车从甲地开往乙地,每时行70 km,5时到达。如果要4时到达,每时需要行驶多少千米?
(1)学生读题,理解题意。
(2)会列式解答吗?试试看。还可以怎么解?(引导学生用反比例知识解答)
2、用比例知识解答
(1)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?
(2)用同样的砖铺地,铺18 m2要用618块砖。如果铺24 m2,要用多少块砖?
学生独立分析、解答,教师巡视,并加以指点。
根据这两道题组织学生讨论正比例关系和反比例关系的相同点和不同点。
讨论后全班交流,教师引导学生归纳并板书。
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例是相对应的两个数的比值(商)一定。反比例是相对应的两个数的积一定。
四、变式提高练习
按规律填数。
(1)(1,36),(2,18),(3,12),(4,),(5,)
(2)15,210,315,4(),()25
(3)81,27,(),3,1,()
五、全课小结
同学们,今天我们学习了什么?你有什么收获?还有哪些疑问?
六、拓展练习
根据自己的生活经验,各构建一道生活中用正比例和反比例解决的问题,再解决,并与同学交流你构建问题的思考方法和解决问题的方法。
反比例教案(11)
教学内容:
教材第42~44页例4~例6,“练一练”,练习八第4—7题。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、复习旧知
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、教学新课
1.教学例4。
出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例5。
出示例5。
请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)
3.概括反比例的意义。
(1)综合例4、例5的共同点。
提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。
4.具体认识。
(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例5里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)做练习八第4题。
让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]
(4)判断。
现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例6。
出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?【板书;每本的页数×本数=纸的总页数(一定)】请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做“练一练”第l题。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.做“练一练”第2题。
指名口答,说说理由。思考时可以引导看数量关系式。
3.做练习八第5题。
让学生先在书上判断。指名口答,要求说出数量关系式判断。
4.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
5.做练习八第6题。
各人先在书上写各成什么比例。指名口答,要求说明理由。
6.做练习八第7题。
先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习八第7题。
反比例教案(12)
教学目标
1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.
教学重点
理解正反比例的意义,掌握正反比例的变化的规律.
教学难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入 新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)
1
2
3
4
5
6
7
8
None
路程(千米)
90
180
270
360
450
540
630
720
None
1.写出路程和时间的比并计算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 这个比值表示什么意义?
(4) 360比5可以吗?为什么?
None
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
教师板书:商不变
(二)成反比例的量
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.
工效(个)
10
20
30
40
50
60……时间(时)
60
30
20
15
12
10
None
2.教师提问
(1)计算工效和时间的乘积.
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)
3.小结:有什么规律?(板书:积不变)
(三)不成比例的量
1.出示表格
运走的吨数
10
20
30
40
剩下的吨数
90
80
70
60
总吨数(和不变)
100
100
100
100
2.教师提问
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变
(四)结合三组题观察、讨论、总结变化规律.
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化
不同点:第一组商不变,第二组积不变,第三组和不变.
总结:
3.分别概括正、反比例的意义
4.强调第三组题中两种相关联的量叫做不成比例
5.教师提问
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式
三、巩固练习
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔
总价(元)
1.2
2.4
3.6
4.8
6
7.2
支数
1
2
3
4
5
6
单价(元)
1
2
4
5
10
支数
100
50
25
20
10
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽
4.修一条路,已修的米数和剩下的米数.
四、课堂总结
今天这节课我们初步了解了正反比例的意义,并能运用正反比例的意义判断一些简单的问题.通过正反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是反比例的关系,要抓住两种相关联的量的变化规律,这是本质.
五、课后作业
(一)判断下面每题中的两种量是不是成正比例,并说明理由.
1.苹果的单价一定,购买苹果的数量和总价.
2.轮船行驶的速度一定,行驶的路程和时间.
3.每小时织布米数一定,织布总米数和时间.
4.长方形的宽一定,它的面积和长.
(二)判断下面每题中的两种量是不是成反比例,并说明理由.
1.煤的总量一定,每天的烧煤量和能够烧的天数.
2.种子的总量一定,每公顷的播种量和播种的公顷数.
3.李叔叔从家到工厂,骑自行车的速度和所需时间.
4.华容做12道数学题,做完的题和没有做的题.
六、板书设计
数学教案-正、反比例的意义
反比例教案(13)
教学设计示例1
反比例函数及其图象
教学目标 :
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点 :描点画出反比例函数的图象
教学用具:直尺
教学方法:小组合作、探究式
教学过程 :
1、从实际引出反比例函数的概念
我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例
即vt=S(S是常数);
当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(S是常数)
(S是常数)
一般地,函数 (k是常数, )叫做反比例函数.
如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数 与 的图象
解:列表
x
-6
-5
-4
-3
1
2
3
4
5
6
-1
-1.2
-1.5
-2
6
3
2
1.5
1.2
1
1
1.2
1.5
2
-6
-3
-2
-1.5
-1.2
1
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)
(1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数 的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小.
同样可以推出 的图象的性质.
(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.
函数 的图象性质的讨论与次类似.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4
教学设计示例2
反比例函数及其图像
一、素质教育目标
(一)知识教学点
1.使学生了解反比例函数的概念;
2.使学生能够根据问题中的条件确定反比例函数的解析式;
3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;
4.会用待定系数法确定反比例函数的解析式.
(二)能力训练点
1.培养学生的作图、观察、分析、总结的能力;
2.向学生渗透数形结合的教学思想方法.
(三)德育渗透点
1.向学生渗透数学来源于实践又反过来作用于实践的观点;
2.使学生体会事物是有规律地变化着的观点.
(四)美育渗透点
通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.
二、学法引导
教师采用类比法、观察法、练习法
学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号.
三、重点·难点·疑点及解决办法
1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.
2.教学难点 :画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.
3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).
4.解决办法:(1) 中隐含条件是 或 ;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.
四、教学步骤
(一)教学过程
提问:小学是否学过反比例关系?是如何叙述的?
由学生先考虑及讨论一下.
答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.
看下面的实例:(出示幻灯)
1. 当路程s一定时,时间t与速度v成反比例;
2.当矩形面积S一定时,长a与宽b成反比例;
它们分别可以写成 (s是常数), (S是常数)写在黑板上,用以得出反比例函数的概念:(板书)
一般地,函数 (k是常数, )叫做反比例函数.
即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?
通过这个问题,使学生进一步理解反比例函数的概念,只要满足 (k是常数, )就可以.因此可以说速度v是时间t的反比例函数,因为 (s是常量).对第2个实例也一样.
练习一:教材P129中1 口答.P130 1
根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?
答:图像和性质.
通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后
学生要研究其他函数,也可以按照这种方式来研究.
下面,我们就来看桓隼?猓海ǔ鍪净玫疲?/P>
例1 画出反比例函数 与 的`图像.
提问:1.画函数图像的关键问题是什么?
答:合理、正确地选值列表.
2.在选值时,你认为要注意什么问题?
答:(1)由于函数图像的特点还不清楚,多选几个点较好;
(2)不能选 ,因为 时函数无意义;
(3)选整数较好计算和描点.
这个问题中最核心的一点是关于 的问题,提醒学生注意.
3.你能不能自己完成这道题呢?
学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:
注意:(1)一般地,反比例函数 的图像由两条曲线组成,叫做双曲线;
(2)这两条曲线不相交;
(3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交.
关于注意(3)可问学生:为什么图像与x和y轴不相交?
通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性.
再让学生观察黑板上的图,提问:
1.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?
2.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?
这两个问题由学生讨论总结之后回答,教师板书:
对于双曲线(1)当 :(1)当 时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当 时,双曲线的两分支位于二、四象限,y随x的增大而增大.
3.反比例函数的这一性质与正比例函数的性质有何异同?
通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.
练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上
上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)
例2已知y与 成反比例,并且当 时, ,求 时,y的值.
用提问的方式对此题加以分析:
(1)y与 成反比例是什么含义?
由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了: .
(2)根据这个式子,能否求出当 时,y的值?
(3)要想求出y的值,必须先知道哪个量呢?
(4)怎样才能确定k的值?用什么条件?
答:用待定系数法,把 时 代入 ,求出k的值.
(5)你能否自己完成这道例题:
由一名同学板演,其他同学在练习本上完成.
例3 已知: , 与x成正比例, 与x成反比例,当 时, 时, ,求y与x的解析式.
分析:一定要先写出y与x的函数表达式 。
要用x分别把 , 表示出来得 。
要注意 不能写成k,∴
解:设 。
.
由题意得
∴ .
(二)总结、扩展
教师提问,学生思考回答:
1.什么是反比例函数?
2.反比例函数的图像是什么样的?
3.反比例函数 的性质是什么?
4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.
五、布置作业
1.教材P130中4,5,6
2.选做:P130中B1,2
六、板书设计
13.8反比例函数及其图像
引例:(1)例1: 例2: 例3:
(2)
1.反比例函数:
2.反比例函数的性质 探究活动
已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D。 。
(1)求反比例函数的解析式;
(2)设点A的横坐标为m, 的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(3)当 的面积等于 时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3。如果能,求此时抛物线的解析式;如果不能,请说明理由。
解:(1)过点B作 轴于点H。
在Rt 中。
由勾股定理,得
又 。
∴ 点B(-3,-1)。
设反比例函数的解析式为
∵ 点B在反比例函数的图像上。
∴ 反比例函数的解析式为 。
(2)设直线AB的解析式为 。
由点A在第一象限,得 。
又由点A在函数 的图像上,可求得点A的纵坐标为 。
∵ 点B(-3,-1),点 。
∴ 解关于 、 的方程组,得
∴ 直线AB的解析式为 。
令 。
求得点D的横坐标为 。
过点A作 轴于点G
由已知,直线经过第一、二、三象限。
∴ ,即 。
由此得
∴ 。
即 。
(3)过A、B两点的抛物线在x轴上截得的线段长不能等于3。
证明如下:
由 。
得
解得 。
经检验, 都是这个方程的根。
∴ 不合题意,舍去。
∴ 点A(1,3)。
设过A(1,3)、B(-3,-1)两点的抛物线的解析式为 。
∴ 由此得
即 。
设抛物线与x轴两交点的横坐标为 。
则
令
则 。
即 。
整理,得 。
∴ 方程 无实数根。
因此过A、B两点的抛物线在x轴上截得的线段长不能等于3。
数学教案-反比例函数及其图象
反比例教案(14)
17.1.1 反比例函数的意义(第一课时) 授课目标:八年级普通班 一、教学目标 (一)知识与技能 1、理解反比例函数的意义; 2、能够根据已知条件确定反比例函数的表达式。 (二)过程与方法 1、经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际; 2、将所学知识运用于解决实际问题,提高自身灵活运用知识的能力。 (三)情感态度价值观 1、体验函数是描述变量间对应关系的重要数学模型; 2、培养合作交流意识和探索能力。 二、教学重难点 (一)重点:理解反比例函数的意义,确定反比例函数表达式 (二)难点:能从实际问题中抽象出反比例函数并确定其表达式 三、授课类型:新授课,探究课 四、授课课时:一个课时,45分钟 五、教具: 黑板,粉笔,投影仪 六、教学过程设计 (一)温故知新 问题1:什么是函数? 一般地,设在一个变化的过程中有两个变量x和y,如果对于变量x的每一个值,变量y都有惟一的值与它对应,我们称y是x的函数.其中,x是自变量,y是因变量. 问题2:汽车每小时耗油量为4升,那么从甲地到乙地的总耗油量y (升)与汽车的行驶的时间t (小时)的函数关系是y=4t.y是t 的正比例函数. 时间t(时) 1 2 3 4 5 …… 总耗油量(升) 4 8 12 16 20 …… (教师引导学生思考,并且对应函数概念,总结回忆得出:每有一个t值,就有一个y值与它对应。) 问题3:某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分交费0.4元,则每月应缴费用y(元)与通话时间x(分)之间的关系式为y=50 0.4x 通话时间x分 1 2 3 4 5 费用y元 50.4 50.8 51.2 51.6 52 (与问题二比较,学生很容易可以得到类似的结论:每有一个t值,就有一个y值与它对应。这样,达到复习函数概念的效果,引入新课的学习。) (二)引入新课 思考1:京沪线铁路全程为1463km,乘坐某次列车所用的时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示? 由vt=1463推得: ; 思考2:总长为k(单位:km)的同一条铁路线上,不同车次列车的运行速度v(单位:km/h)有快有慢,运行时间t(单位:h)有长有短。变量v、t间的对应关系可用怎样的函数式表示? 由vt=k推得: ; 思考3:某住宅小区要种植一个面积为 1000m2 的矩形草坪,草坪的长 y(单位:m)随宽 x(单位:m)的变化而变化: 思考4:已知北京市的总面积为1.68×104平方米,人均占有的土地面积S(单位:平方米/人)随全市总人口t(单位:人)的.变化而变化: (设计意图:创设问题情境,回顾已有知识,让学生从生活中发现数学问题,激发学生的学习兴趣。) 通过以上讨论得到这些函数表达式后,让学生思考这些函数表达式有那些共同特征: ; ; ; 从而得到反比例函数的定义:形如 y= (k为常数,k≠0)的函数,称为反比例函数. 注意:1、其中x是自变量,y是函数. 2、自变量x的取值范围是不等于0的一切实数. 3、也可以写成y=kx-1或xy=k. 并且加以强调:“y是x的反比例函数”等价于“y= (k为常数,k≠0)” (设计意图:使学生从上述不同的数学关系中,抽象出反比例函数的一般形式,让学生感受从特殊到一般的数学思考方法,发展学生抽象思维能力。) (三)练习巩固 在初步理解什么是反比例函数以及反比例函数的表达式后,教师给出练习,加深对反比例函数定义的理解和掌握。 练习1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少? (1) (2) (3) (4) (5) (6) 练习2:根据函数表达式填写下表: x -4 -3 -2 -1 1 2 3 4 (设计意图:根据定义完成以上题目之后,总结出反比例函数定义式以及其常见的变式;通过学生的讨论与交流,使学生进一步熟悉反比例函数。) 例题讲解:已知y是x的反比例函数,当x=2时, y=6. (1)写出y与x之间的函数解析式; (2)求当x=4时y的值; (3)求当y=-3时x的值. 学生思考、交流,解答问题。教师引导学生正确运用反比例函数表达式解答问题。并引导学生总结解题的基本步骤: (1)建立反比例函数式的模型; (2)求出k值,确定反比例函数式。 (使学生正确理解反比例函数的概念,并能用反比例函数是的模型解决问题。) (四)扩展提高 习题1:写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值. (1)底边为5cm的三角形的面积y(cm2)随底边上的高 x(cm)的变化而变化; (2)矩形的面积为4,一条边的长x,随另一条边的长y的变化而变化. 习题2:⑴ 在下列函数中,y是x的反比例函数的是( ) A. B. C. xy=5 D. ⑵已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数关系式是 , 当x=-3时,y= 习题3: 利用概念解题 当m为何值时,函数 是反比例函数,并求出其函数解析式. 解:由题意,知 m-1≠0 |m|-2 =-1 解得 m=-1 故:当m=-1时,反比例函数解析式为 y= 习题4:联系生活实际:你能否联系生活实际,举例说明反比例函数 表示生活中的数量关系吗? (设计意图:使学生进一步熟悉求反比例函数关系式的基本方法,加深对反比例函数意义的理解,能够根据已知条件确定反比例函数的表达式。) (五)小结反思 谈谈本节课你有哪些收获? 1. 知识小结 2. 思想方法方面:(1)待定系数法 (2)从实际问题中引出反比例函数从而解决问题(转化思想) (六)布置作业 1. 教科书第40页1、2、3题;第46页1、2题 2. 预习教科书17.1.2 反比例函数的图像和性质 恳请指导,谢谢! 王丹奇
反比例教案(15)
课 题 5.1 反比例函数 课型 新授课 教学目标 1.从现实情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。 2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。 教学重点 理解和领会反比例函数的概念。 教学难点 领悟反比例函数的概念。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、创设情境、导入新课 问题提出: 电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时, (1)你能用含有R的代数式表示I吗? (2)利用写出的关系式完成下表: R/Ω 20 40 60 80 100 I/A 当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么? 学生小组合作讨论。 概念:如果两个变量x,y之间的关系可以表示成 的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。 学生探究反比例函数变量的相依关系,领会其概念。 二、联系生活、丰富联想 做一做 1.一个矩形的面积为20 ,相邻的两条边长分别为xcm和ycm。那么变量y是变量x的函数吗?为什么? 学生先独立思考,再进行全班交流。 2.某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么? 学生先独立思考,再同桌交流,而后大组发言。 3.y是x的反比例函数,下表给出了x与y的一些值: x -2 -1 1 3 … y 2 -1 …… (1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表。 学生先独立练习,而后再同桌交流,上讲台演示。 三。随堂练习 课本随堂练习 1、2 四、课堂总结 反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。 五、布置作业 课本习题5.1 1、2 课 题 5.2 反比例函数的图象与性质(一) 课型 新授课 教学目标 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。 3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。 教学重点 掌握反比例函数的作图。 教学难点 反比例函数的三种表示方法的相互转换。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流、问题牵引 回顾: 1.一次函数的图象是怎样的呢?你能画出y=-2x-1的图象吗? 2.什么叫做反比例函数: 3.你能提供一个生活情境来表现反比例函数中两个变量之间的相依关系吗?与同伴交流。 学生思考、交流、回答。 迁移:同学们,请你们猜一猜,反比例函数的图象是什么样的呢? 学生动手画图,相互观摩。 议一议 (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。 (2)如果在列表时所选取的数值不同,那么图象的形状是否相同? (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点? (4)曲线的发展趋势如何? 学生先分四人小组进行讨论,而后小组汇报 做一做 学生动手画图,相互观摩。 想一想 学生小组讨论,弄清上述两个图象的异同点。 二、随堂练习 课本随堂练习 1 [探索与交流] 三、课堂总结 在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数的性质,因此在作图象的过程中,大家要进行积极的探索。另外,反比例函数的图象是非线性的,它的图象是双曲线。 四、布置作业 课本习题5.2 1 课 题 5.2 反比例函数的图象与性质(二) 课型 新授课 教学目标 1.经历观察、归纳、交流的过程,逐步提高从函数图象中获取信息的能力,探索反比例函数的主要性质。 2.提高学生的观察、分析能力和对图形的感知水平,使学生从整体上领会研究函数的一般要求。 教学重点 掌握反比例函数的主要性质。 教学难点 理解反比例函数的性质。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、观察联想、探究新知 探索:(1)函数图象分别位于哪几个象限内? (2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗? (3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么? 学生观察,同桌交流,大胆发言,发表见解。 二、自主探究、领悟规律 议一议: 考察当k=-2,-4,-6时,反比例函数的图象,它们有哪些共同特征? 学生通过相互交流、补充和修正。 概念:反比例函数 的图象,当k>0时,在每个象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大。 想一想 (1)在一个反比例函数图象上任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1 ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2 , S1和S2 有什么关系?为什么? (2)将反比例函数的图象绕原点旋转180°后,能与原来的图象重合吗? 学生分四人小组进行操作。 三、随堂练习 课本随堂练习 1、2 四、课堂总结 通过归纳、概括反比例函数的`图象特征,发展从图象中获取信息的能力。 五、布置作业 课本习题5.3 1、2 试一试1 课 题 5.3 反比例函数的应用 课型 新授课 教学目标 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。 教学重点 掌握从实际问题中建构反比例函数模型。 教学难点 从实际问题中寻找变量之间的关系。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流、情境导入 某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。 问题思考: (1)请你解释他们这样做的道理。 (2)当人和木板对湿地的压力一定时,随着木板面积S(m2 )的变化,人和木板对地面的压强P(Pa)将如何变化? (3)如果人和木板对湿地的压力合计600N,那么: ①用含S的代数式表示P,P是S的反比例函数吗?为什么? ②当木板面积为0.2 m2 时,压强是多少? ③如果要求压强不超过6000Pa,木板面积至少要多大? ④在直角坐标系中,作出相应的函数图象。 ⑤请利用图象对(2)和(3)作出直观解释,并与同伴交流。 学生分四人小组进行探讨、交流。 二、寓思与练、小组探究 做一做 1.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R( )之间的函数关系如图5-8所示: 探究:(1)蓄电池的电压是多少?你能写出这一函数的表达式吗? (2)完成下表(课本P142),并回答问题,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内? 学生独立思考,而后再进行全班交流,上讲台演示。 继续探究: 探究:(1)请你分别写出这两个函数的表达式; (2)你能求出点B的坐标吗?你是怎样求的?与同伴交流。 学生独立思考,解答问题,上讲台演示自己的解答。 三、随堂练习 课本随堂练习 1题 四、课堂总结 本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以看什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。 五、布置作业 课本习题5.4 1、2
反比例教案(16)
教学内容:教材第99~102页例1~例3。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:认识反比例关系的意义。
教学难点:掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关
系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例2。
出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050
所需的天数
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例1
出示例1。
请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的.规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么。
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例3。
出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?
三、巩固练习
用刚才我们说的判断方法来做几道题。
1.做练一练。
指名学生口答,说明理由。(可以写出数量关系式看一看)
2.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做练习十二第1题。
四、课堂小结
这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?
五、课堂作业
练习十二第2~4题。
反比例教案(17)
一、教学目标:
1、加深对反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能用反比例知识解决有关问题。
2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。
二、 教学重点:用比例知识解决实际问题。
三、 教学难点:正确分析题中的数量关系,列出方程。
四、教学过程:
(一)、复习
1、成正比例和成反比例的量的`判断。
2、用正比例解决问题的步骤。
一:找到题中不变的量;
二:根据不变的量写出关系式;
三:判断成什么比例;
四:列出比例式;
五:解比例。
(二)、探究新知
教学例5:一批书如果每包20本,要捆20包,如果每包30本,要捆多少包?
A.提出问题组织学生讨论:
① 问题中有哪两种量?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
B. 根据反比例的意义列出方程并解方程。
根据比例的意义,学生独立完成,并在小组中交流。
学生汇报:
解:设要捆元。
30=2018
= 36030
=12
答:要捆12包。
五.应用反馈 课件出示:
1. 教材60页做一做第2题。(单价乘数量等于总价,总价一定)
2. 课件上的练习题。
指名扮演,独立练习,集体订正。 巩固新知,训练解题能力。
六.课堂小结 通过这节课的学习,你有哪些收获?
反比例教案(18)
实际问题与反比例函数教案设计
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的.基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
反比例教案(19)
人教版小学数学六年级下册《反比例》教案设计
设计说明
“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1.借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2.借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3.借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备
教师准备 PPT课件
学生准备 玻璃杯 直尺 水 实验记录单
教学过程
⊙复习引入
1.复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?
(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?
预设
生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?
预设
生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2.引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)
设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
⊙探究新知
1.在具体情境中初步感知成反比例关系的量。
(1)课件出示教材47页例2,引导学生结合问题进行观察。
师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积/cm2
反比例教案(20)
正比例以及反比例的公开课教案
正比例和反比例是在同学学习了比和比例的基础上进行教学的,主要让同学结合实际情境认识成正比例和反比例的量。知识与技能方面的教学目标是:经历从具体实例中认识成正比例和反比例的量的过程,理解正比例、反比例的意义,学会判断两种相关联的量是否成正比例或反比例。正比例、反比例都是表示两个相关联的变量之间关系的一种数学模型,都是在一定的条件下,一种量随着另一种量的变化而变化。本单元的教材分“成正比例的量”和“咸反比例的量”两个局部,先教学正比例的认识,再教学反比例的认识。在同一节课里引导同学探索两种量在变化过程中存在的规律,并用关系式表示出规律,有助于同学掌握正比例、反比例概念的实质,因此我们抓住知识的内联与实质规律,重组正比例、反比例教学:把认识成正比例的量和认识成反比例的量的两个例题整合起来,布置在一节课里进行教学,让同学在同一实例的情境中,感悟、体会并理解正比例、反比例的意义。
重组教材,创编文本。将教材中的例1(结合生活中的实例认识成正比例的量)和例3(结合生活中的实例认识成反比例的量)整合成同一问题情境下有前后联系的两道例题:保存原教材中的例1,引导同学认识成正比例的量;根据例1的情境,创编新的例2,替代原教材中的例3,引导同学认识成反比例的量。将教材中的例2(认识正比例图像)放到认识正比例、反比例之后进行教学。
抓住实质,内联教学。成正比例的量的实质规律是“比值一定”,成反比例的量的实质规律是“积一定”,引导同学探究发现这两种实质规律是教学的主要任务,教学时应掌握好这一点。本设计将例1和例2整合到同一情境下,从同学熟悉的时间、速度和路程这三个量之间的关系动身,引导同学对比研究,在观察、讨论交流中发现:①例1和例2中的两种量都是相关联的量,都是在一定的条件下,一种量随着另一种量的变化而变化。②例1中两种相关联的量的变化方向是相同的,一种量扩大(或缩小),另一种量也随着扩大(或缩小);例2中两种相关联的量的变化方向是相反的,一种量扩大,另一种量反而缩小。③例1中扩大、缩小的规律是“比值一定”,例2扩大、缩小的规律是“积一定”。这样抓住正比例、反比例的实质和联系进行教学,有助于同学加深对正比例、反比例意义的.理解,从整体上掌握各种量之间的比例关系。
对比练习,沟通联系。同学对成正比例的量和成反比例的量有了一定的认识后,还需要一定的练习。为了协助同学逐步提高判断成正比例、反比例的量的能力,本设计中的练习分三个层次:一是判断咸正比例的量的练习;二是判断成反比例的量的练习;三是正比例、反比例对比练习,成比例的量与不成比例的量的对比练习。比较和辨析,有助于同学更好地掌握正比例、反比例概念的实质